- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Chuah, Chian Yeong (4)
-
Mei, Tao (3)
-
Liu, Zhen-Chuan (2)
-
Han, Yazhou (1)
-
Hungar, Brett (1)
-
Kawagoe, Kyle (1)
-
Liu, Zhenchuan (1)
-
Penneys, David (1)
-
Tomba, Mario (1)
-
Wallick, Daniel (1)
-
Wei, Shuqi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Chuah, Chian Yeong; Hungar, Brett; Kawagoe, Kyle; Penneys, David; Tomba, Mario; Wallick, Daniel; Wei, Shuqi (, Journal of Mathematical Physics)The recent article by Jones et al. [arXiv:2307.12552 (2023)] gave local topological order (LTO) axioms for a quantum spin system, showed they held in Kitaev’s Toric Code and in Levin-Wen string net models, and gave a bulk boundary correspondence to describe bulk excitations in terms of the boundary net of algebras. In this article, we prove the LTO axioms for Kitaev’s Quantum Double model for a finite group G. We identify the boundary nets of algebras with fusion categorical nets associated to (Hilb(G),C[G]) or (Rep(G),CG) depending on whether the boundary cut is rough or smooth, respectively. This allows us to make connections to the work of Ogata [Ann. Henri Poincaré 25, 2353–2387 (2024)] on the type of the cone von Neumann algebras in the algebraic quantum field theory approach to topological superselection sectors. We show that the boundary algebras can also be calculated from a trivial G-symmetry protected topological phase (G-SPT), and that the gauging map preserves the boundary algebras. Finally, we compute the boundary algebras for the (3 + 1)D Quantum Double model associated to an Abelian group.more » « less
-
Chuah, Chian Yeong; Liu, Zhenchuan; Mei, Tao (, Proceedings of the American Mathematical Society, Series B)This article studies the properties of positive definite, radial functions on free groups following the work of Haagerup and Knudby [Proc. Amer. Math. Soc. 143 (2015), pp. 1477–1489]. We obtain characterizations of radial functions with respect to the length on the free groups with infinite generators and the characterization of the positive definite, radial functions with respect to the length on the free real line with infinite generators for . We obtain a Lévy-Khintchine formula for length-radial conditionally negative functions as well.more » « less
-
Chuah, Chian Yeong; Han, Yazhou; Liu, Zhen-Chuan; Mei, Tao (, Journal of Fourier Analysis and Applications)
An official website of the United States government
